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Abstract: Combinatorial optimization enables machine-learning stable parsimonious 
conventional models that are naturally interpretable. This interpretable AI approach expands 
the realm of possibilities in generating better performing models to meet the needs of 
managerial usage and policy analysis in those fields bound by traditions and/or regulations. 
We demonstrate the working of interpretable models on two datasets (i.e., hedonic regression 
on house prices and vector autoregression on seven macroeconomic time series). Although 
interpretability distinguishes our approach, its performance can still be comparable to, if not 
better than, black-box AI models on the same data. We benchmark the performance of the 
hedonic house pricing model against a random-forest regression and two feed-forward neural 
networks. 
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I. Interpretable AI 
 

Artificial Intelligence (AI) has been a branch of scientific undertaking for many decades. 
The underlying technology is centered around building neural networks to mimic how human 
brains function. It is fair to say that until the emergence of Google’s BERT model for natural 
language processing in 2018, AI’s power and potential were not quite appreciated even within 
the scientific community. Open AI’s release of ChatGPT in 2022 has wowed the general 
populace and ushered in a new era. The impact has gone way beyond the scientific community, 
and AI is now a household term.  
 

While our imagination is flying high and the debate on what GenAI (Generative AI) or AI in 
general can deliver continues, the current AI approach in managerial applications and policy 
analyses has already hit a wall, so to speak. It is primarily due to the black-box nature of neural 
network models. Interpretability reigns supreme for a model to be deployed for managerial 
decision making. Expecting models to be interpretable by decision makers is hardly surprising 
and quite understandable because they are held accountable to various stakeholders for the 
outcomes of a decision regardless of how it has been reached.1  As a safeguard, financial 
regulations typically dictate that AI models in use must be interpretable. Beyond regulations, 
demanding interpretability has been ingrained in our tradition-bound systems in health care, 
finance and other highly regulated industries. For example, a medical prescription prompted 
by a black-box model that goes wrong will have little chance of surviving the legal scrutiny of 
the doctor responsible in the event of litigation.  
 

In the AI domain, some experts differentiate explainability and interpretability, and others 
use them interchangeably. Instead of dwelling on the subtleties, it suffices to say that 
achieving interpretability is a taller order than giving a model some explainability.2 Beyond 
any abstract description, what is the interpretability of a model anyway? In this author’s view, 
we shall consider interpretability either as theory or common sense based.  

 
For theory-based interpretability, classical mechanics is a good example for illustrating the 

point. An object being exerted with an initial force is expected to travel in a parabolic curve 
and due to gravity land in a predictable distance. This is well understood by and interpretable 
to people with exposure to elementary physics. Added real-life complexities such as friction 
may cause the prediction to be off for objects of different sizes and shapes, and thus the model 
requires further tuning. If the prediction has undergone a data-based adjustment on the same 
physics framework using data collected through experiments, the refined model will remain 

 
1 The European Union’s Artificial Intelligence Act (Article 13), for example, states that “High-risk AI systems 
shall be designed and developed in such a way as to ensure that their operation is sufficiently transparent 
to enable deployers to interpret a system’s output and use it appropriately. An appropriate type and degree 
of transparency shall be ensured with a view to achieving compliance with the relevant obligations …”. 
2  Explainable AI provides the user with how and why the AI model reaches a prediction. In contrast, 
interpretable AI offers a transparent decision process, and the user can appreciate with his/her background 
knowledge how a prediction is made and whether it is sensible. Random forest vis-à-vis classical decision 
tree offers a case in point. The former is explainable but not interpretable, because one can explain to the 
user how a random forest works, but its decision recommendation cannot be interpreted due to 
randomization. The latter is, on the other hand, both explainable and interpretable.  
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interpretable to those who have knowledge of classical mechanics. Were the model built 
entirely on data with a neural network, it would be viewed as a black box and becomes 
uninterpretable. 

 
As to the common-sense interpretability, one can appreciate it using a hedonic regression 

model. Economists often use such a model to describe how the many attributes of a 
composite good together determine the total price. The typical use of hedonic regressions on 
real estate prices similarly follows this line of thinking to view a housing unit as a composite 
good whose location, size, condition, view, and many other features together command its 
transaction price. With a hedonic pricing model built on prices on many transacted properties, 
one can mark-to-market those many more off-market properties that have not been changed-
hands lately. To economists and lay people alike, a hedonic regression model becomes 
interpretable when the appearance of a feature in the regression jells well with their intuition. 
The magnitude and the sign of its regression coefficient reflect the extent and direction of the 
response to a change in the value of this feature. Moreover, the magnitudes of the regression 
coefficients convey a sense of market weightings in the overall importance for pricing. 

 
Interpretability depends on the user’s knowledge background; for example, the classical 

mechanics model mentioned earlier makes little sense to people without some level of physics 
knowledge. It also changes over time because something completely foreign to people today 
may become common sense years down the road. In short, interpretability is not absolute, 
which evolves over time and depends on the user’s educational background, professional 
training and life experience. Industry standards of the day and the stage of technological 
development also play a role. It is therefore conceivable that we may one day reach the point 
at which neural networks are no longer viewed as black boxes. 

 
Building AI or machine-learning models for managerial usage and policy analysis will likely 

be more productive if we set out to enhance the conventional interpretable models with 
modern analytical tools. Instead of upsetting the conventional understanding, why not take 
advantage of familiarity to ensure a model’s interpretability to the target users? In this paper, 
we will showcase two concrete examples in economics to demonstrate how this can be 
accomplished, and such interpretable AI models can be competitive in performance with 
black-box approaches. 
 
II. Interpolation vs extrapolation usage 
 

Interpolation means to generate a predicted value where the input values corresponding 
to the features of a model all fall within the range of data in the sample used to train the 
model. Neural networks, for example, have shown their mighty interpolation power in natural 
language and imagine processing, among others. Due to their mathematical structure, 
however, they will behave unpredictably in extrapolation; that is, a prediction faces an input 
value for some feature that goes outside the range of the data used in training the model.  

 
It is well known in statistical literature that the prediction made by all nonparametric curve 

fitting techniques deteriorates when an input value gets closer from within to the data 
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boundary. For predictions made with input values beyond the boundary, they become 
unreliable, and one should therefore refrain from applying them in the extrapolation context. 
This is hardly surprising because flexibility of a modeling technique such as neural networks 
inevitably comes with a price, and the lack of guidance from theory or intuition renders its 
inability to predict something based on a pattern beyond what has already been revealed in 
the data. 

 
 Interpretability of a model is a source of persuasive power which enables the user to feel 

comfortable in extrapolation with the model. This is essential in managerial applications, 
policy analyses and other areas where conventional expert judgements play a critical role. 
Take again the hedonic house pricing model as an example. When the model indicates that 
the size of a property determines the overall price with a particular positive multiplying factor, 
i.e., a positive regression coefficient, the user will deem it in line with his/her intuition and 
feel comfortable to extrapolate with it on a property that is way larger than any property in 
the training data. If the model also suggests that the property price’s response magnitude to 
the size depends on which district is located, i.e., an interaction term of the size and the district 
indicator, one will find such a model implication to be interpretable. After all, location, location, 
location is the mantra of real estate.  

 
Interpretability can lead to extrapolation with a sense of ease, but one needs to be mindful 

of its limitations. The specific usage context should also be factored in. Again, we can use the 
interpretable hedonic pricing model to elaborate. Suppose the model has included among 
other features the year in which a transaction took place to capture the real estate boom-and-
bust cycle, and the model has been trained on the transaction prices up to the end of 2024. 
This model would make sense to specialists and lay people, and it would thus be interpretable. 
However, this model could not be used for extrapolation into 2025 and beyond, but that may 
be the period for which the model has been intended. If such extrapolation for the off-market 
properties in 2025 is indeed a model’s intended purpose, one must avoid including a feature 
like “year”. A simple solution is to substitute it with a real estate price index as an alternative 
way to reflect the boom-and-bust cycle. In short, interpretability is necessary for the 
extrapolation purpose but by no means sufficient. Other model design elements may also be 
important. 

 
III. Machine learning interpretable models 

 
The two machine-learned interpretable models to be shown in this section will serve as 

our examples of interpretable AI in action. Their interpretability is naturally endowed because 
they are conventional models for tabular data familiar to the users in their respective domains. 
Our machine learning via combinatorial optimization simply facilitates the building of a better 
performing model on the familiar conceptual framework. The common challenge is to find the 
best subset of variables/features out of a very large set of possible combinations so that the 
conventional model can perform well and stably in and out of the training sample. In short, 
this line of machine learning highly depends on a flexible combinatorial optimization 
technique made possible by sequential Monte Carlo sampling. 
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Ideally, the chosen best subset of features and the directions of response for the key 
features of the model are theoretically justified and/or intuitively sensible. Moreover, the final 
model is parsimonious, meaning that the number of chosen features is manageably small so 
that the model can stay operationally nimble. We will also show through the first example that 
the interpretable AI model is competitive with two black-box methods if not better. 

 
A. A stable optimized hedonic house pricing model 

 
We use the dataset on house prices in Ames, Iowa as described in De Cock (2011) to 

showcase the working of an interpretable AI model. In this demonstration, we also compare 
its performance with two commonly used black-box methods (random forest and neural 
network) in machine learning. Our demonstration further refines what has been studied in 
Duan, et al (2022), which deployed the same dataset. We utilize the stable combinatorially-
optimized feature selector (SCOFS) of Duan (2024) as well as the stable optimized decision 
tree (SODT) of Duan and Li (2024). The former is an improved algorithm over its earlier version 
used in Duan, et al (2022) by engaging a cross-validated target function to achieve a more 
stable out-of-the-sample performance. The latter is a method of finding a stable decision tree 
where a cross-validated performance target is optimized over all possible tree configurations.3 

 
There are 80 variables in the Ames housing dataset where one is the transaction price and 

the remaining 79 are the features describing the property. Readers can find a description of 
these 79 features at http://jse.amstat.org/v19n3/decock/DataDocumentation.txt. Many of 
these 79 features are categorical data, for example, 28 neighborhoods within Ames city limits. 
Some features are ordinal such as slope of property (gentle, moderate and severe) whereas 
some are numerical, for example, gross living area. The dataset covers the period from 2006 
to 2010 with 2,930 transactions, and among them 2,269 have no missing values. We will use 
these 2,269 data points to conduct the comparison analysis.4  

 
We adopt a two-stage model building process. The aim of the first stage is to simplify many 

categorical and ordinal features by consolidating them into some composite group dummy 
variables. The fact that there are 28 neighborhoods as mentioned earlier explains why this 
approach is a good idea. It is hard to imagine that all 28 neighborhoods are distinct for the 
pricing purpose. Neither are they homogeneous to the point that buyers would view them all 
as comparable. Hence, the possible combinations to consider are numerous; for example, two 
neighborhoods are equally preferrable and distinct from all others. The total number of 
combinations to consider for, say, two and eight neighborhoods alone are 378 and over 3 
million, respectively. The number of possibilities rapidly rises when more neighborhoods are 

 
3 We deploy iSelect, a proprietary software of ADBIZA, to run SCOFS and SODT. Both rely on sequential 
Monte Carlo combinatorial optimization devised in the respective papers. 
4 Missing values present no problem to our building of interpretable hedonic pricing model because iSelect 
handles them by directly treating missing values as a distinct class for categorical, ordinal and numerical 
variables. For the Ames dataset, the hedonic pricing models with and without missing value cases perform 
comparably. In this demonstration, we do not report the result because the comparison models (random 
forest and neural network) would need to first engage some data imputation, which would inevitably 
complicate the comparison. 

http://jse.amstat.org/v19n3/decock/DataDocumentation.txt
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grouped together. It is a tall order to exhaust all possibilities even with a powerful computer 
unless deploying an intelligent algorithm. 

 
This is where we engage SODT to come up with the ten composite groups. The choice of 

ten groups is for ease of interpretation, and the software can produce the optimal number of 
groups through its optimal decision-tree regression function. Out of the resulting ten 
composite groups, the top-price category turns out to have the average house price at 
$406,894 whereas the bottom-price group faces $108,675 on average. The rules that define 
the top-price group are three criteria – (1) the overall quality is rated 8 or above in the scale 
of 1 to 10, (2) the basement square footage is larger than 1,718, and (3) the location is in one 
of the select five neighborhoods out of 28 in total. On the other hand, the bottom-price group 
consists of properties with the quality rated 4 or below plus two other conditions (size of the 
basement and the type of dwelling). This sort of division into composite groups gives rise to 
an easily interpretable model typical of a commonly seen scoring system in finance. 

 
The first-stage division of the properties yields an R2 of 72.96% on the testing data. The 

model may even suffice for some managerial usage where further refinement is deemed 
unnecessary. If the usage context turns out to be more demanding of pricing precision, we 
can move on to the next stage to build a more powerful hedonic pricing model. In that case, 
we add these ten group indicators as additional features for the second-stage model 
construction. As stated earlier, the choice of ten composite groups is for ease of interpretation 
and using ten, eleven or a larger number of groups does not materially change the 
performance of the final hedonic regression model, but using a too small number of groups 
may adversely affect its performance. 

 
Deploying categorical variables directly in a model makes little sense because the different 

categories of such a variable are distinct and without any meaningful ordering relationships. 
Per usual, we create binary indicators out of each categorical variable; for example, the 28 
neighborhoods are converted into 28 binary indicators to record whether a property is in a 
particular neighborhood. After completing this type of conversion, the original 79 features 
have been turned into 106 variables.5 Further adding the ten composite group indicators gives 
rise to 116 feature variables. In economics or social science, interaction terms are often 
considered for their natural interpretability. We therefore add to the 116 features in the first 
order with those non-redundant interaction terms in the second order to yield 6,094 potential 
features in total.6 

 
A hedonic regression being directly estimated on so many potential features is not only 

technically infeasible but would also become intuitively silly as a model. Selecting a good 
performing manageable subset of features is obviously the essence of building a practical and 
interpretable hedonic pricing model. We use a three-fold cross-validated sum of squared 
residuals as the minimization target function when applying SCOFS on the training sample of 

 
5 A binary indicator for a category will not be created when it constitutes less than 5% of the data 
instances. 
6 Redundancy occurs, for example, squaring a binary indicator yields the same binary variable. 
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1,701 data instances, which is a randomly sampled dataset (three quarters of the whole 
dataset). The remaining 568 data points are saved for the testing purpose. 

 
The final hedonic pricing model selects 25 features out of 6,094 potential ones. By design, 

each of the selected features is highly statistically significant. The model’s good performance 
is visually reflected in Figure 1 where the results for both the training and testing data are 
presented. The horizontal axis represents the model’s predicted price whereas the vertical axis 
is the corresponding transaction price of a house. The plotted points scatter around the 45-
degree line for both samples, which indicates the model’s good and stable performance. 

 

Figure 1: The predicted values by the hedonic pricing model vs the actual transaction prices 
for the training and testing datasets on a sample of Ames, Iowa house prices. 

 
It is interesting to note that this chosen hedonic regression model does not need an 

intercept term. Among the selected variables, many are interaction terms. After algebraically 
rearranging those interaction terms by anchoring on a set of 18 features, a highly interpretable 
version of the model emerges with variable coefficients on the anchoring features as shown 
in Table 1. Corresponding to the first anchoring feature, “Gross Living Area”, for example, its 
variable coefficient has a positive constant of 47.84 which indicates that the house price 
increases with “Gross Living Area”, and every 1,000 square feet commands additional $47,840. 
To appreciate the results, we note that the average housing unit size in this sample is 1,505 
square feet. In addition to the constant, the second term “Year Built_demeaned” in this 
variable coefficient suggests that a house one year newer will fetch an additional $173.5 per 
1,000 square feet. The second anchoring feature appearing in Table 1 is “Bsmt 
Qual_demeaned”, whose negative coefficient implies a lower price if the unit’s basement has 
above average quality, a rather counterintuitive result that calls for an explanation. It turns 
out that “Bsmt Qual” and “Gross Living Area” are negatively correlated at -0.35, and their 
interaction term thus serves to offset somewhat the positive price effect of “Growth Living 
Area”. The rearrangement work continues until exhausting all 25 selected features.7 

 
7 The sequence of anchoring features is part of the subjective preference of the user; for example, one may 
find more appealing to anchor the first feature on “Lot Area” followed by “Gross Living Area” and so on. All 
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Table 1: An interpretable version of the hedonic pricing model by casting interaction terms as 
variable regression coefficients 

Anchoring Variable Variable Coefficient 

Gross Living Area 47.84 + 0.1735*Year Built_demeaned - 2.4*Bsmt Qual_demeaned  
- 1.8*Bsmt Exposure_demeaned - 4.98*Kitchen Qual_demeaned 

Lot Area 0.9428 + 0.6331*Half Bath_demeaned + 0.3803*Garage Cars_demeaned 

1st Floor SF 51.62 + 13.09*Overall Qual_demeaned - 0.02516*1st Flr SF_demeaned  
- 158.59*Group8 

Garage Area 19.39 + 12.32*Full Bath_demeaned 

Garage Cars 1317.29 + 78.47*Screen Porch_demeaned 

Overall Cond 6934.65 

Basement Finished SF 
Type 1 21.11*Condition 1_Norm 

Masonry Veneer Area 39.55*Foundation_PConc 

Full Bath - 7934.86*Sale Condition_Abnorml 

Fireplaces 28216.03*Group10 

…... 

 
This interpretable hedonic pricing model yields a median pricing error rate8 of 6.23% for 

training data and 6.85% for the testing sample, respectively. Using the typical statistics for 
measuring the performance of a regression, this model has delivered an R2 of 93.89% and 
92.16% for the training and testing data as reported in Table 2, indicating that the model’s out-
of-the-sample performance is only marginally off when compared to the training-data R2.  

 
As a quick benchmark, we present the selection result obtained on the same dataset with 

the popular Lasso regression of Tibshirani (1996) and re-estimate the selected model with a 
post-selection OLS regression to remove any downward bias (in the magnitude of regression 
coefficients) caused by the Lasso penalty. This post-selection step is commonly performed 
these days. For comparability, we also use the three-fold cross validation for Lasso. Table 2 
reveals that Lasso has grossly over-selected the features, yielding 59 variables in contrast with 
25 by SCOFS, and many of the regression coefficients, 26 out of 59 selected features, are 
statistically insignificant. Evidently, Lasso is not a reliable way to obtain a parsimonious 

 
interpretable versions share the same model but with different algebraic rearrangements to cater to user 
preferences. 
8 The median pricing error rate is computed as the sample median of all individual property’s error rates 
defined by |transaction price – predicted price|/transaction price. 
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regression model.9 Even with an over-selected model, its training and test data performances 
reported in Table 2 are only comparable to that of the hedonic pricing model produced by 
SCOFS. 

 
Table 2: Compare the performance of the interpretable hedonic regressions obtained by 
SCOFS and Lasso, and the two black-box approaches 

  
  
  
  
  

Hedonic Regression Neural Network            Random Forest 
106 converted features  
+ 10 group indicators 106 converted features 

1st + 2nd order terms 
1 hidden layer 

(64 nodes) 
2 hidden layers  
(64+32 nodes) 

# trees = 180  
max depth = 12 Total # features = 6094 

SCOFS Lasso + OLS 

# features 
selected 25 59 - - - 

# significant 
features (5%) 25 33 - - - 

R2 (training data) 93.89% 93.81% 89.87% 98.74% 98.21% 

R2 (testing data) 92.16% 92.05% 86.13% 91.29% 91.23% 

 
We now compare the hedonic pricing model’s performance with two black-box 

approaches where one is based on the random-forest regression and the other deploys two 
feed-forward neural networks. In the former case, we engage the greedy search and the three-
fold cross validation to determine the final tree for each of 180 randomized samples with the 
maximum depth of 12. For the latter, the neural network models are constructed according to 
the standard practice of using a validation sample (one-third of the training data) to control 
overfitting. We consider two feed-forward networks – (1) one hidden layer with 64 nodes and 
(2) two hidden layers with 64 and 32 nodes in the first and second layers. Since these two 
modeling approaches by design handle nonlinear relationships, we leave out the ten 
composite group indicators and the interaction terms to use the 106 converted input features 
as described earlier, which in principle does not compromise the information content in the 
feature space.  

 
Table 2 shows that either one of the two alternative approaches yields an overfitting result 

with their training-data performance clearly better than that on the testing data. In fact, the 
neural network’s performance on the testing data is worse than that of the hedonic pricing 
model chosen by SCOFS, yielding an R2 of 86.13% for the model with one hidden layer and 
91.29% with two hidden layers. Compared to their training-data counterparts (89.87% and 
98.74%), the neural network approach vis-à-vis the hedonic regression shows a more 

 
9  Lasso’s tendency to grossly over-select features has been documented in, for example, Duan (2024) 
through a simulation study, and the mathematical reason for such a tendency has been provided. 
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pronounced overfitting. The random forest model fares no better either with its training- and 
testing-data R2 at 98.21% and 91.23%, respectively. 

 
B. A stable parsimonious vector autoregression 

 
A vector autoregression (VAR) of moderate dimension and/or long lag structure contains 

many parameters. A priori, most of these parameters are likely inconsequential and 
statistically insignificant if estimation is even feasible. Placing many zeros on a VAR either by 
theory and/or intuition has its limitations and practical difficulty. Here, we show how 
deploying the stable combinatorially-optimized feature selector (SCOFS) of Duan (2024) can 
effectively simplify the model structure and thus identify a stable parsimonious VAR that is 
interpretable to typical users in the concerned fields. In essence, we conduct a combinatorial 
optimization using the cross-validated likelihood function corresponding to the seemingly 
unrelated regression10 formulation of the VAR to find the best performing stable parsimonious 
VAR.  

 
We now develop a parsimonious VAR on the quarterly time series of seven 

macroeconomic variables studied in Smets and Wouters (2007) but expanded to the period 
from 1947:Q2 to 2020:Q1. These seven variables are (1) Consumption Growth, (2) Investment 
Growth, (3) Output Growth, (4) Hours Worked, (5) Inflation, (6) Wage Growth, and (7) Fed 
Funds Rate. For details on their definitions, one can read Smets and Wouters (2007).  

 
The data sample spanning over 73 years has likely experienced some structural breaks. It 

is therefore desirable to introduce some time-period indicators to allow the algorithm to 
discover a structure that better fits the data. In line with this consideration, we introduce three 
period indicators: (1) 𝑃𝑃𝑡𝑡

(1)  for Golden Age (1947:Q2-1979:Q4), (2) 𝑃𝑃𝑡𝑡
(2)  for Post-Golden Age 

(1980:Q1-2008:Q2), and (3) 𝑃𝑃𝑡𝑡
(3) for Post-Global Financial Crisis (2008:Q3-2020:Q1), and each 

of which takes the value of 1 if a quarter falls in that period and 0 otherwise. We interact these 
three period indicators with the seven macroeconomic variables lagged up to four quarters. 
Together, the VAR model faces 812 potential coefficients; that is, 4×(7 intercepts + 4×49 lagged 
coefficients). In addition, the VAR model has 28 residual variance-covariance terms to be 
estimated. If one is in doubt of the above time-period division, more sets of period indicators 
can be added to the potential model, and SCOFS will then identify the best performing 
parsimonious VAR in the expanded space. 
 

To face up to the large VAR model of this type, researchers typically adopt a Bayesian 
approach with the Minnesota-type prior of Sims and Zha (1998). Putting aside whether such 
a prior is justifiable, having a prior is essential to the estimation of such an overparameterized 
VAR model in the first place. Applying combinatorial optimization to simplify the VAR structure 
allows us to return to the frequentist view or remain as a Bayesian. For the former, SCOFS 
simply targets the likelihood function of the VAR whereas for the latter, the target becomes 
the likelihood function times the prior, a Minnesota-type or not. 

 
10 Seemingly unrelated regression is a well-known econometric technique. Unfamiliar readers are referred 
to any standard econometrics book. 
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For ease of presenting the results, we introduce some mathematical notations. The VAR 

model considered is 

𝑿𝑿𝑡𝑡 = 𝑨𝑨𝑡𝑡 + �𝑩𝑩𝑗𝑗,𝑡𝑡𝑿𝑿𝑡𝑡−𝑗𝑗

4

𝑗𝑗=1

+ 𝝐𝝐𝒕𝒕 

where 𝑿𝑿𝑡𝑡 is the vector of the seven macroeconomic variables (in their stated order) at quarter 
t. 𝑨𝑨𝑡𝑡 is the vector of seven corresponding intercepts, and 𝑩𝑩𝑗𝑗,𝑡𝑡 is the 7×7 coefficient matrix for 
lag j. Their subscript t is meant to say that these coefficients may depend on the time for which 
they are intended, and it is of course due to our allowance for structural breaks with the 
periods defined earlier. Finally, 𝝐𝝐𝒕𝒕 is the seven-dimensional residual term.  
 

𝑩𝑩1,𝑡𝑡 
Consumption 
Growth 

0 0 0 0 -0.3380 0 0 

Investment 
Growth 

0.5598 0.3095 0 0 0 0 0 

Output 
Growth 

0.4156 0 0 0 0 0 0 

Hours 
Worked 

0.2843 0 0.1940 0.9759 0 0 0 

Inflation 0 0 0 0 
0.9301 

-0.4521×𝑃𝑃𝑡𝑡
(1) 

0 0.4467×𝑃𝑃𝑡𝑡
(1) 

Wage 
Growth 

0 0 0 0 0 -0.4685×𝑃𝑃𝑡𝑡
(3) 0 

Fed Funds 
Rate 

0.0517 0.0465×𝑃𝑃𝑡𝑡
(2) 0 0 0 0 

1.0045 
-0.2129×𝑃𝑃𝑡𝑡

(2) 
 

𝑩𝑩2,𝑡𝑡 
Consumption 
Growth 

0 0 0 0 -0.8744×𝑃𝑃𝑡𝑡
(3) 0 0 

Investment 
Growth 

0 0 0 0 0 0 0 

Output 
Growth 

0 0 0 0 0 0 0 

Hours 
Worked 

0 0 0 0 0 0 0 

Inflation 0 0 0 0 0 0 0 
Wage 
Growth 

0 0 0 0 0 0 0 

Fed Funds 
Rate 

0 0 0 0 0.3606×𝑃𝑃𝑡𝑡
(2) 0 0 

 
With a five-fold cross-validated likelihood function as the target, SCOFS selects a stable 

parsimonious VAR that comprises 21 non-zero coefficients, a sharp reduction from 812 
potential ones. We summarize the selected VAR model as follows. First, there are four selected 
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non-zero intercepts, i.e., 𝑨𝑨 = [0.7724,0,0.2377,−0.2584,0,0.4422,0]′ , and there is no 
structural break in these intercepts.11  

 
As to the autoregression coefficients, there are no selected terms at lag 3 or higher. The 

two tables provide a consolidated view of the 17 selected lag terms governing the structure 
of this parsimonious VAR. Although their standard errors are not presented to conserve space, 
all lag coefficients are highly significant.  

 
These results offer simple interpretations and likely make a great deal of sense to 

economists. For example, the second row of 𝑩𝑩1,𝑡𝑡 implies that either a positive consumption 
growth or investment growth in the previous quarter will increase the investment growth of 
the current quarter, reflective of their positive coefficients in (row 2, column 1) and (row 2, 
column 2). The seventh row suggests that the Fed Funds rate of the current quarter will 
positively respond to a rise in the consumption growth in the previous quarter. In addition, 
the Fed Funds rate will increase in response to a positive investment growth in the previous 
quarter if the current quarter falls in the Post-Golden Age. Furthermore, the Fed Funds rate 
of the current quarter will positively react to itself revealed in the previous quarter, and the 
magnitude of response will be dampened somewhat if the current quarter is in the Post-
Golden Age. The impacts from the two quarters ago are, however, only limited to two 
macroeconomic variables (i.e., Consumption Growth and Fed Funds Rate) as shown in 𝑩𝑩2,𝑡𝑡, 
and they are only relevant to specific periods.  

 
To avoid over-displaying the information that is not critical to our appreciation of the 

parsimonious VAR, we have omitted the reporting of the estimated residual covariance matrix. 
But it suffices to say that all residuals are correlated to indicate contemporaneous 
relationships. 

 
In summary, the above parsimonious model has a structure that characteristically differs 

from the typical Bayesian VAR, and it is far easier to interpret this model. Although a 
performance comparison on a testing data has not been conducted, it will be hardly surprising 
to find this parsimonious VAR model to outperform its competitor, because this model has 
been constructed with a cross-validated target likelihood function and it is free from the bias 
introduced by the Bayesian prior. 

 
IV. Concluding remarks 
 

Black-box AI models such as neural networks have already proven their power in natural 
language and image processing and some other settings. However, the lack of interpretability 
expected for managerial and/or policy usage has obviously limited their applicability and calls 
for a different approach to unleashing computing power for those applications.  

 
In this paper, we have demonstrated interpretable AI by two examples of machine learning 

conventional interpretable models. Sequential Monte Carlo combinatorial optimization 
 

11 “Hours Worked” has a negative intercept because this variable is a logarithmically transformed index 
value. 
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enables us to expand the realm of possibilities through finding a stable parsimonious 
representation out of many potential features. The resulting model retains the interpretability, 
but its performance has markedly improved to the point of being comparable to, if not better 
than, those black-box models such as neural network and random forest. Instead of forcing 
interpretability on black boxes, it seems to make more sense to utilize machine learning to 
improve conventional models when interpretability is utmost important.  

 
In principle, the combinatorial optimization approach adopted for our two examples can 

work on all conventional models to enhance their performance in addressing the fast-
increasing data footprints. The practical challenge rests with the computing power that the 
model developer needs to muster when a conventional model becomes increasingly complex. 
However, the algorithm for sequential Monte Carlo combinatorial optimization is 
fundamentally parallel which simply means a need for the model developers to network more 
multicore computers to complete increasingly more demanding tasks. 
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